

Programa Regular

Redes de Computadoras II

Modalidad de la Asignatura: Teórico-práctica.

Carga horaria: 3 hs.

Objetivos:

Al finalizar el curso, el estudiante será capaz de comprender y manejar conceptos avanzados en redes de datos; comprender en forma completa el modelo de capas; comprender el funcionamiento de las capas de Transporte y Aplicación del modelo TCP/IP, describiendo los principales protocolos de cada una, sus características y ámbito de aplicación; describir los principales protocolos de cada capa del modelo TCP/IP, sus características, funciones y ámbito de aplicación en base a la integración con los conceptos aprendidos en Redes de Computadoras I; resolver problemas básicos de ruteo; aplicar los conocimientos aprendidos para resolver problemas en redes reales.

Contenidos:

Modelos de referencia. Funciones principales de la capa de transporte. TCP. UDP. Funciones principales de capa de aplicación. Protocolos de capa de aplicación. Conceptos avanzados de algoritmos de ruteo y protocolos. Computación orientada a redes. Conceptos de seguridad en redes.

Unidades temáticas:

Unidad I

Capa de Transporte: Conceptos generales. Servicios. Relaciones con la capa de Red. Multiplexación y Demultiplexación. Protocolos de transporte. Transporte sin conexión: UDP. Estructura de datagrama. Transporte orientado a la conexión TCP. La conexión TCP. Estructura del segmento. Control de Flujo. Principios del Control de congestión. Causas y Métodos de control de congestión.

Unidad II

1

Capa de aplicación: Conceptos generales. Arquitectura. Relaciones con la capa de Transporte. Protocolos de la capa de aplicación. Internet, la Web y HTTP. Versiones de HTTP. Conexiones Persistente y no Persistentes. Métodos. Formato de los mensajes. Cookies. FTP. Modos. Comandos. Respuestas. SMTP. Formato de mensajes. Protocolos de acceso al correo electrónico: POP3, IMAP, Webmail. DNS. Servicios. Funcionamiento. Consultas Iterativas y consultas recursivas. Tipos de servidores. Registros. Aplicaciones P2P.

Unidad III

Programación: Sockets. Características. Ejemplos. Librerías. Implementaciones. Llamada a procedimiento Remoto (RPC). Características. Ejemplos. Librerías. Implementaciones. Common Gateway Interface (CGI). Características. Ejemplos. Librerías. Implementaciones.

Unidad IV

Ruteo: Enrutamiento jerarquico. Sistemas Autónomos. Estructura de Internet: ISP de nivel 1, 2 y 3. Protocolos IGP. Protocolo EGP. Protocolo BGP. CIDR (Classless Inter-Domain Routing).

Bibliografía:

- Stallings, W. Data and Computer Communications. Editorial Prentice Hall (ISBN: 0-13-243310-9). Ed. 8°. Año 2007.
- Tanenbaum, A. Computer Networks. Editorial Prentice Hall (ISBN: 9780130661029). Ed. 4°. Año 2002.
- Commer, D. Internetworking with TCP/IP Vol. I. Editorial Prentice Hall. Ed. 5°.
 Año 2006.
- Stevens, W. TCP/IP Illustrated Vol. 1. The Protocols. Editorial Addison-Wesley Professional Computing Series. Ed. 2°. Año 2 011.
- Kurose, J.; Ross, K. Redes de Computadoras: un enfoque descendente. Editorial Pearson. Ed. 5°. Año 2010.

Propuesta didáctica: Las clases se desarrollarán en el Laboratorio de Informática. Se organizarán en modalidades teórico-prácticas con soporte de presentaciones digitales y prácticas en función de cada clase.

En las clases se presentan los contenidos teóricos y se van resolviendo en forma conjunta ejemplos que ayuden a comprender los nuevos conceptos introducidos.

La formación práctica está basada en la resolución de problemas tipo, de actividades experimentales y de problemas abiertos de ingeniería.

En cuanto a la formación experimental se realizarán las siguientes actividades:

- Introducir al estudiante al laboratorio para identificar las características, funciones y terminología de cada una de las siete capas del modelo de referencia OSI y de las cuatro capas del modelo TCP/IP.
- Introducir al estudiante en el uso de un analizador de protocolos para comprender mejor el proceso de encapsulación en una arquitectura de red TCP/IP.
- Introducir al estudiante en el uso de un analizador de protocolos para visualizar las operaciones dinámicas de UDP, TCP y FTP.
- Introducir al estudiante en la implementación de un servidor DNS.
- Introducir al estudiante en la configuración de un servidor http.
- Introducir al estudiante en la configuración de un equipo host para el servicio de correo electrónico.

La realización de estas actividades le garantiza a los estudiantes una adecuada formación experimental, a partir de la aplicación de los conocimientos adquiridos hasta entonces.

En cuanto a los problemas abiertos de ingeniería, se realizarán trabajos relacionados a casos prácticos de campo que vinculan lo académico con lo profesional, integrando los conceptos desarrollados durante la cursada. Abarcan desde el diseño de la red física (diseño de la topología y dispositivos asociados), centro de cómputos (servicios y conectividad) y servicios de aplicaciones (email, servidor web, dns, gestión de red). La realización de los trabajos implica la identificación de un problema dado y la solución del mismo, a partir de la aplicación de los conocimientos adquiridos hasta entonces, lo cual constituye la base formativa para que el estudiante adquiera las habilidades que le permitan encarar proyectos y diseños de ingeniería.

Los estudiantes deben realizar entregas de al menos un trabajo integrador durante el desarrollo de la cursada el cual será revisado por los docentes y devuelto a los estudiantes para su corrección.

El material correspondiente a las clases teóricas, así como los documentos de la práctica se encontrarán disponibles a través de un grupo Web al cual los estudiantes tendrán acceso. Este mecanismo también será utilizado para realizar consultas simples.

Actividades extra-áulicas: Se establecerán guías de actividades prácticas para que el estudiante pueda ejercitar, a fin de consolidar los conceptos aprendidos en clase.

Evaluación: La evaluación integradora de las instancias teórico-prácticas se realiza a través de un parcial teórico-práctico en máquina. Además, los estudiantes deberán desarrollar un trabajo final donde se integren los temas vistos en la materia. Las clases son obligatorias ya que implican participación y debate que forman parte de la evaluación.