

Programa regular

Asignatura: Información y comunicaciones

Carrera: Ingeniería en Informática.

Ciclo Lectivo: 2017

Docentes:

Docente Coordinador: Esp. Ing. Martin Morales

Plantel docente: Ing. Gross Patricio M.

Carga horaria semanal: 5hs

Tipo de Asignatura: Teórico - Práctico

Fundamentación y Objetivos:

Fundamentación:

Información y Comunicaciones es una materia obligatoria de la carrera de Ingeniería en informática correspondiente al tercer año de la carrera. En la materia se abordan conocimientos introductorios y generales acerca de los sistemas de comunicaciones y sus fundamentos. En particular se profundiza en el estudio de los diversos medios de transmisión de señales y las diferentes características de éstos.

Información y comunicaciones está intimamente relacionada con los contenidos de las asignaturas "Redes de Datos I" y "Redes de datos II" como así también con contenidos de las asignaturas de Física. Se busca complementar y profundizar en conceptos y conocimientos que dichas materias no alcanzan a abordar.

La asignatura debe aportar a los estudiantes estrategias para abordar estudios de los sistemas de transmisión de datos por la línea telefónica, sistemas satelitales y sistemas de fibra óptica; tráfico, ruidos que afectan a los sistemas, tipo de modulación, multiplexado de señales, codificación, detección de errores, etc. del área de competencia del ingeniero en informática.

Objetivos:

Que los alumnos:

- Comprendan y se familiaricen con los conceptos fundamentales de sistemas de comunicaciones.
- Comprendan y puedan aplicar criterios para la elección de diversos medios de comunicaciones.

 Puedan aplicar los conocimientos aprendidos para resolver problemas en redes de comunicaciones.

Contenidos mínimos:

Principios de la teoría de la información. Técnicas de trasmisión de datos. Modelos y topologías de redes. Modelos de referencia. Terminología básica de señales, componentes y sistemas de comunicaciones. Redes Teleinformáticas.

Unidades temáticas:

Unidad I

Introducción a las comunicaciones: La informática y las telecomunicaciones. Breve historia de las comunicaciones. La revolución informática y la sociedad del conocimiento. La incorporación de las comunicaciones al fenómeno informático. La teleinformática y las tecnologías de la información. La globalización e Internet. Definición y concepto de transmisión de datos. Aplicaciones típicas de los sistemas de comunicación de datos. Circuito teleinformático. Esquemas básicos. Enlace y circuito de datos. Internet. Antecedentes históricos. Equipos que integran la red. Situación actual y organización.

Unidad II

Características de las señales de telecomunicaciones: Señales analógicas y digitales. Definiciones. Tasa de errores. Transmisión de señales. Características de las señales utilizadas en la transmisión de datos. Señales periódicas. Representación de una señal periódica mediante la serie de Fourier. El espectro de frecuencias electromagnéticas. Unidades de medida. El ancho de banda. Definición y concepto de ancho de banda. Efecto del ancho de banda sobre una señal. Señales en banda base. Transmisión en banda base. Códigos usados para señales en banda base. Códigos normalizados por la UIT-T. Filtros.

Unidad III

Redes de Telecomunicaciones: Medidas de la velocidad. Relación entre ancho de banda y tasa de transferencia. Relación entre la tasa de errores y el ancho de banda. Transmisión multinivel. Compresión de datos. Modos de transmisión: serie y paralelo. Transmisión asincrónica y sincrónica. Tipos de transmisión. Canal de comunicaciones. Las redes de telecomunicaciones. Tipos de enlaces. Topología de las redes de telecomunicaciones. La red telefónica pública conmutada. Técnicas usadas en las redes telefónicas conmutadas y su proceso de digitalización. Funcionamiento de la red telefónica pública conmutada. Uso de la red telefónica para la transmisión de datos. Ingeniería de tráfico. Congestionamiento y grado de servicio. Centrales telefónicas privadas. Capacidad de tráfico. Redes digitales privadas. Protocolos de comunicaciones.

Arquitecturas de comunicaciones. Protocolos de enlace de comunicaciones. Clasificación de los protocolos sobre la base del concepto de arquitecturas de comunicaciones.

Unidad IV

Modulación, digitalización y multiplexación de señales: Definiciones y clasificación de las técnicas de modulación. Modulación de amplitud, frecuencia y fase. Digitalización de señales analógicas. Muestreo, cuantificación y codificación. Teorema de Nyquist. Modulación por pulsos. Clasificación de la modulación por pulsos. Ventajas de la modulación por pulsos. Modulación de pulsos analógica. Modulación de pulsos digital. Modulación por pulsos codificados (PCM). Variantes de la modulación por pulsos codificados. Multiplexación. Utilización del ancho de banda disponible. Técnicas de multiplexación. Multiplexación por división de frecuencia (FDM) y por división de tiempo (TDM).

Unidad V

Teoría de la información y de la codificación: Nociones de teoría de la información. Medida de la información. Entropía y tasa de información. Relación entre la capacidad de un canal y la tasa de información. Teoría de la codificación. Clasificación de los códigos. Parámetros considerados en la construcción de códigos. Códigos usados en sistemas informáticos. Código decimal codificado en binario (BCD). Códigode intercambio de datos. Código 4 de 8. Código Extendido Decimal Codificado en Binario, para el intercambio de la información. Códigos usados en servicios teleinformáticos. Código USACII. Composición del repertorio de caracteres. Los caracteres de control. Juegos de caracteres codificados para los servicios de telemática. La Recomendación T.51 de la UIT -T. El juego de caracteres primario. El juego de caracteres suplementarios. Comparación y rendimiento de distintos códigos. Eficiencia, redundancia.

Unidad VI

Canales de comunicaciones: Canales de comunicaciones. Tipos de canales. Canales ideales y reales. Concepto de capacidad de un canal. Teorema de Shannon-Hartley. Señalización de los canales de comunicaciones. Funciones que cumple la señalización. Señalización analógica y digital. Descripción somera del funcionamiento de los sistemas de señalización. Distintos sistemas de señalización. Ruido y distorsión. Relación señal a ruido y factor de ruido. Efecto pelicular. Normas de calidad para canales establecidos en la red telefónica. Recomendaciones. Acondicionamiento de los canales de comunicaciones. Eco. Ecualización. Los errores de transmisión. Tipos de errores y su tratamiento. Tasa de errores. Detección de errores. Detección de errores mediante control de la paridad. Detección de errores por el método de control por redundancia cíclica (CRC). Corrección de errores. Técnicas de corrección de errores. La tasa de error en el diseño de un sistema de transmisión de datos.

Unidad VII

Medios de comunicaciones: Lossistemas de comunicaciones. Cables de cobre: distintos tipos. Características generales. Detalles constructivos y operativos. Cables de par

trenzados. Cables trenzados para voz y datos utilizados en cableados estructurados. Cables de cobre multipares. Cables multipares subterráneos. Cables multipares aéreos. Cables coaxiales: respuesta a la transmisión de señales digitales.

Velocidad de propagación de las señales. Fibras ópticas. Detalles constructivos de la fibra óptica. Principios de funcionamiento. Tipos de fibra óptica. Pérdidas en las fibras ópticas. Cables ópticos mono y multifibra. Sistemas optoelectrónicos. Radiocomunicaciones. Propagación de las ondas electromagnéticas. Espectro de radiofrecuencias. Transmisión Wireless. Naturaleza y propagación de las ondas de radio. Microondas. Características de las antenas de microondas. Comunicaciones satelitales. Clasificación de los distintos tipos de satélites. Componentes de un sistema de comunicaciones por satélite. Características de los sistemas de comunicaciones satelitales. Guía de onda. Características generales. Láser. Características de los equipos láser.

Unidad VIII

Hardware de comunicaciones: Interfases de la capa física. Interfases series más difundidas. La norma V.24 y su similar, la RS-232. Características técnicas principales y limitaciones que presenta. Niveles de normalización. Características funcionales. La interfase digital RS-449. La interfase digital X.21. La recomendación V.35. Módem de datos. Características y funciones. Clasificación. Enlace de banda ancha. Enlaces simétricos y asimétricos. ADSL. Las comunicaciones de datos en los computadores personales. Capacidad de procesamiento y almacenamiento de datos. Procedimientos de establecimiento de la comunicación. Control de flujo de datos. Detección, corrección de errores y comprensión de los datos. Internet y los computadores personales. Red teleinformática actual de video, voz y datos.

Bibliografía:

- Abramson, Norman. Teoría de la Información y Codificación. Editorial Paraninfo, Madrid. Año 1981.
- Frenzel, Louis. Electrónica Aplicada a los Sistemas de Comunicaciones. Tercera Edición. Editorial Alfaomega, México. Año 2003.
- Forouzan, B. A. "Transmisión de datos y redes de comunicaciones". Cuarta edición. Mexico, Pearson Education, 2004.
- Halsall, Fred. Redes de Computadores e Internet. Quinta Edición. Editorial Addison Wesley. Año 2006.
- Stallings, William. Comunicaciones y Redes de Computadoras. Octava Edición. Editorial Pearson Prentice Hall. Año 2007.
- Tanembaum, Andrew S. Redes de Ordenadores. Cuarta Edición. Editorial Prentice Hall, México. Año 2003.

Propuesta didáctica:

Las clases se desarrollarán en el Laboratorio de Informática. Se organizarán en modalidades teórico-prácticas con soporte de presentaciones digitales y prácticas en función de cada clase.

En las clases se presentan los contenidos teóricos y se van resolviendo en forma conjunta ejemplos que ayuden a comprender los nuevos conceptos introducidos.

La formación práctica está basada en la resolución de problemas tipo, de actividades experimentales y de problemas abiertos de ingeniería.

En cuanto a la formación experimental se realizarán las siguientes actividades:

- -Introducir al estudiante en el armado de distintos conectores y fichas para el cableado para la interconexión de equipos.
- -Introducir al estudiante en el armado físico de diferentes tipos de redes informáticas.
- -Introducir al estudiante en el análisis de espectros para visualizar diferentes señales de datos y de distintos tipos de modulaciones.
- -Introducir al estudiante en el análisis de parámetros de cables coaxiales, multilínea (utp 5, utp 6).
- -Adicionalmente se prevé una visita al centro de cómputos de la universidad con el fin de que los alumnos puedan visualizar diferentes componentes que componen la red de datos.

La realización de estas actividades le garantiza a los estudiantes una adecuada formación experimental, a partir de la aplicación de los conocimientos adquiridos hasta entonces.

En cuanto a los problemas abiertos de ingeniería, se realizarán trabajos con el concepto de laboratorio virtual, mediante software de simulación, referidos al análisis de los diferentes tipos, protocolos y arquitecturas de los sistemas de comunicaciones de datos presentados en la asignatura. La realización de los trabajos implica la identificación de un problema dado y la solución del mismo, lo cual constituye la base formativa para que el estudiante adquiera las habilidades que le permitan encarar proyectos y diseños de ingeniería.

Los estudiantes deben realizar entregas de al menos un trabajo integrador durante el desarrollo de la cursada el cual será revisado por los docentes y devuelto a los estudiantes para su corrección.

El material correspondiente a las clases teóricas, así como los documentos de la práctica se encontrarán disponibles a través de un grupo Web al cual los estudiantes tendrán acceso. Este mecanismo también será utilizado para realizar consultas.

Actividades extra-áulicas:

Se establecerán guías de actividades prácticas para que el estudiante pueda ejercitar, a fin de consolidar los conceptos aprendidos en clase.

Evaluación:

La materia está dividida en 2 módulos. La evaluación integradora de las instancias teórico-prácticas se realiza a través de un parcial teórico-práctico por cada módulo con su respectivo recuperatorio. Para aprobar la materia el alumno deberá obtener una nota mayor o igual a 4 en ambos módulos. Para obtener la promoción el alumno deberá obtener una nota mayor o igual a 7 en cada uno de los módulos.

Además, los estudiantes deberán desarrollar un trabajofinal donde se integren los temas vistos en la materia. Las clases son obligatorias ya que implican participación y debate que forman parte de la evaluación.

El régimen de aprobación de la materia, en sus instancias de promoción, aprobado de cursada o la instancia de recursar la materia, se rige bajo las normativas vigentes que define el Reglamento Académico establecidopor la Universidad Nacional Arturo Jauretche.